Switchboard Documentation
  • Switchboard On Demand
  • Understanding Switchboard
    • Introduction
      • Why Switchboard Oracles?
      • Vision & mission
      • Brief History and Key Achievements to Date
      • Switchboard’s Architecture, Tech Stack and Security
        • Trusted Execution Environments (TEEs)
        • Oracle Queues
        • Node Architecture
  • Product Documentation
    • Data Feeds
      • Getting Started with Switchboard Data Feeds
      • Solana / SVM
        • Part 1: Designing and Simulating Your Feed
          • Option 1: Drag-and-Drop Feed Builder
          • Option 2: Designing a Feed in Typescript
        • Part 2: Deploying your Feed On-Chain
        • Part 3: Integrating your Feed
          • Integrating your Feed On-Chain
          • Integrating into Frontends
        • Costs
        • Integrating on Eclipse
      • EVM
        • Part 1: Prerequisites and Quick Start Guide
        • Part 2: Designing and Creating Your Feed
          • Option 1: Drag-and-Drop Feed Builder
          • Option 2: Designing a Feed in Typescript
        • Part 3: Integrating your Feed
          • Integrating your Feed On-Chain
          • Integrating your Feed with Typescript
          • Integrating into Frontends (EVM)
      • Aptos
      • Sui
      • Movement
      • Starknet
      • Optional Features
        • Switchboard Secrets
    • Aggregator
      • How to use the Switchboard Oracle Aggregator
    • Randomness
      • Why Randomness is important?
      • Switchboard's Approach to Verifiable Randomness
      • Tutorials
        • Solana / SVM
        • EVM
  • Tooling and Resources
    • Crossbar
      • Run Crossbar with Docker Compose
    • Switchboard Command Line Interface
    • Technical Resources and Documentation
      • SDKs and Documentation
      • Solana Accounts
      • EVM Identifiers
      • Code Examples (Github)
  • Switchboard Protocol
    • (Re)staking
      • What is (re)staking?
      • What are Node Consensus Networks (NCNs)?
      • What are Vault Receipt Tokens (VRTs)?
      • The Node Partner Program
      • The Switchboard NCN
    • Running a Switchboard Oracle
      • Prerequisites
        • Knowledge about Linux, containers and Self-Hosting
        • Hardware Requirements and AMD SEV SNP
        • Software Requirements
        • Network Requirements
      • Hardware: tested providers and setup
        • OVH
      • Platform: Kubernetes + AMD SEV SNP
        • Bare Metal with Kubernetes (K3s)
      • The Git Repo: Clone Our Code
        • Repo Structure
      • Configuration: Tweaking Configurations
        • cfg/00-common-vars.cfg
        • cfg/00-devnet-vars.cfg and cfg/00-mainnet-vars.cfg
      • Installation: Setup Via Scripts
        • Bare Metal with Kubernetes (K3s) + AMD SEV SNP
  • Frequently Asked Questions and Glossary
    • FAQ
    • Glossary
Powered by GitBook
On this page
  1. Switchboard Protocol
  2. Running a Switchboard Oracle
  3. Platform: Kubernetes + AMD SEV SNP

Bare Metal with Kubernetes (K3s)

The power of Kubernetes on bare metal and VM

PreviousPlatform: Kubernetes + AMD SEV SNPNextThe Git Repo: Clone Our Code

Last updated 2 months ago

If your team has knowledge about Kubernetes, you should be already aware of the many advantages and power that it provides (scalability, flexibility, great tooling, etc..) so we won't go too deep into those aspects here.

Running Kubernetes on your own hardware provides its own challenges but we found that with just a few hints and settings it's easy to run our Oracle code with no huge effort, provided you have basic Kubernetes management knowledge.

During our tests, we found that the easiest and most flexible solution to run Kubernetes on bare metal is K3S () and that is what we're using in our instructions but everything should work as well in any other Kubernetes distribution, provided you're able to use helm and kubectl to control it and the underlying hardware supports AMD SEV SNP.

WARNING: At the moment our instructions are written for a k3s cluster of only one node, but we plan to soon extend it to be able to fully support a multi node cluster as we have Oracles running correctly in this configuration which takes full advantage of Kubernetes HA and scalability offering.

https://k3s.io