Switchboard Documentation
  • Switchboard On Demand
  • Understanding Switchboard
    • Introduction
      • Why Switchboard Oracles?
      • Vision & mission
      • Brief History and Key Achievements to Date
      • Switchboard’s Architecture, Tech Stack and Security
        • Trusted Execution Environments (TEEs)
        • Oracle Queues
        • Node Architecture
  • Product Documentation
    • Data Feeds
      • Getting Started with Switchboard Data Feeds
      • Solana / SVM
        • Part 1: Designing and Simulating Your Feed
          • Option 1: Drag-and-Drop Feed Builder
          • Option 2: Designing a Feed in Typescript
        • Part 2: Deploying your Feed On-Chain
        • Part 3: Integrating your Feed
          • Integrating your Feed On-Chain
          • Integrating into Frontends
        • Costs
        • Integrating on Eclipse
      • EVM
        • Part 1: Prerequisites and Quick Start Guide
        • Part 2: Designing and Creating Your Feed
          • Option 1: Drag-and-Drop Feed Builder
          • Option 2: Designing a Feed in Typescript
        • Part 3: Integrating your Feed
          • Integrating your Feed On-Chain
          • Integrating your Feed with Typescript
          • Integrating into Frontends (EVM)
      • Aptos
      • Sui
      • Movement
      • Starknet
      • Optional Features
        • Switchboard Secrets
      • Task Types
    • Aggregator
      • How to use the Switchboard Oracle Aggregator
    • Randomness
      • Why Randomness is important?
      • Switchboard's Approach to Verifiable Randomness
      • Tutorials
        • Solana / SVM
        • EVM
  • Tooling and Resources
    • Crossbar
      • Run Crossbar with Docker Compose
    • Switchboard Command Line Interface
    • Technical Resources and Documentation
      • SDKs and Documentation
      • Solana Accounts
      • EVM Identifiers
      • Code Examples (Github)
  • Switchboard Protocol
    • (Re)staking
      • What is (re)staking?
      • What are Node Consensus Networks (NCNs)?
      • What are Vault Receipt Tokens (VRTs)?
      • The Node Partner Program
      • The Switchboard NCN
    • Running a Switchboard Oracle
      • Prerequisites
        • Knowledge about Linux, containers and Self-Hosting
        • Hardware Requirements and AMD SEV SNP
        • Software Requirements
        • Network Requirements
      • Hardware: tested providers and setup
        • OVH
      • Platform: Kubernetes + AMD SEV SNP
        • Bare Metal with Kubernetes (K3s)
      • The Git Repo: Clone Our Code
        • Repo Structure
      • Configuration: Tweaking Configurations
        • cfg/00-common-vars.cfg
        • cfg/00-devnet-vars.cfg and cfg/00-mainnet-vars.cfg
      • Installation: Setup Via Scripts
        • Bare Metal with Kubernetes (K3s) + AMD SEV SNP
  • Frequently Asked Questions and Glossary
    • FAQ
    • Glossary
Powered by GitBook
On this page
  • Why Use Switchboard Secrets?
  • Practical Applications
  • Switchboard Secrets in Practice
  1. Product Documentation
  2. Data Feeds
  3. Optional Features

Switchboard Secrets

PreviousOptional FeaturesNextTask Types

Last updated 3 months ago

The Switchboard Secrets feature allows you to securely embed sensitive information, such as API keys or private data, directly within your oracle feeds. Leveraging Trusted Execution Environments (TEEs), Switchboard-Secrets ensures your data remains confidential, secure, and easily accessible in milliseconds when needed.

Why Use Switchboard Secrets?

  • Enhanced Security: Embeds secrets in confidential runtimes, ensuring they are inaccessible to unauthorized entities.

  • Efficiency: Eliminates the need for separate secret management systems by integrating directly with your oracle feeds.

  • Reliability: Built on Switchboard’s robust infrastructure, offering dependable and secure data management.

Practical Applications

  • API Key Management: Securely store and retrieve API keys required for interacting with third-party services with your oracle feeds.

  • Private Data Embedding: Embed private data that needs to be accessed securely within a decentralised application.

  • Secure Transactions: Use embedded secrets to authenticate and authorize secure transactions within your smart contracts.

Switchboard Secrets in Practice

To explore a practical implementation of Switchboard Secrets, refer to our example

repository